EconPapers    
Economics at your fingertips  
 

Sequential Bayesian inference for static parameters in dynamic state space models

Arnab Bhattacharya and Simon P. Wilson

Computational Statistics & Data Analysis, 2018, vol. 127, issue C, 187-203

Abstract: A method for sequential Bayesian inference of the static parameters of a dynamic state space model is proposed. The method is able to use any valid approximation to the filtering and prediction densities of the state process. It computes the posterior distribution of the static parameters on a discrete grid that tracks the support dynamically. For inference of the state process, the Kalman filter and its extensions as well as cubature filtering have been used. It is illustrated with several examples including the stochastic volatility model and the challenging Kitagawa model and is compared to both online and offline methods. It is shown to provide a good trade off between speed and performance.

Keywords: Sequential estimation; Static parameter; Dynamic state space models; Bayesian inference; Grid-based methods (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947318301336
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:127:y:2018:i:c:p:187-203

DOI: 10.1016/j.csda.2018.05.018

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:127:y:2018:i:c:p:187-203