EconPapers    
Economics at your fingertips  
 

Generalized biplots for stress-based multidimensionally scaled projections

J.T. Fry, Matt Slifko and Scotland Leman

Computational Statistics & Data Analysis, 2018, vol. 128, issue C, 340-353

Abstract: Dimension reduction and visualization are staples of data analytics. Methods such as Principal Component Analysis (PCA) and Multidimensional Scaling (MDS) provide low dimensional (LD) projections of high dimensional (HD) data while preserving an HD relationship between observations. Traditional biplots assign meaning to the LD space of a PCA projection by displaying LD axes for the attributes. These axes, however, are specific to the linear projection used in PCA. Stress-based MDS (s-MDS) projections, which allow for arbitrary stress and dissimilarity functions, require special care when labeling the LD space. An iterative scheme is developed to plot an LD axis for each attribute based on the user-specified stress and dissimilarity metrics. The resulting plot, which contains both the LD projection of observations and attributes, is referred to as the Generalized s-MDS Biplot. The details of the Generalized s-MDS Biplot methodology, its relationship with PCA-derived biplots, and an application to a real dataset are provided.

Keywords: Biplots; Multidimensional scaling; Principal component analysis; Classical multidimensional scaling; Stress function; Low dimensional projection (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947318301865
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:128:y:2018:i:c:p:340-353

DOI: 10.1016/j.csda.2018.08.003

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:128:y:2018:i:c:p:340-353