A significance test of the RV coefficient in high dimensions
M. Rauf Ahmad
Computational Statistics & Data Analysis, 2019, vol. 131, issue C, 116-130
Abstract:
The RV coefficient is an important measure of linear dependence between two multivariate data vectors. Using unbiased and computationally efficient estimators of its components, a modification to the RV coefficient is proposed, and used to construct a test of significance for the true coefficient. The modified estimator improves the accuracy of the original and, along with the test, can be applied to data with arbitrarily large dimensions, possibly exceeding the sample size, and the underlying distribution need only have finite fourth moment. Exact and asymptotic properties are studied under fairly general conditions. The accuracy of the modified estimator and the test is shown through simulations under a variety of parameter settings. In comparisons against several existing methods, both the proposed estimator and the test exhibit similar performance to the distance correlation. Several real data applications are also provided.
Keywords: RV coefficient; Dependency measure; Cross-correlations; High-dimensional inference (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947318302536
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:131:y:2019:i:c:p:116-130
DOI: 10.1016/j.csda.2018.10.008
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().