Asymmetric clusters and outliers: Mixtures of multivariate contaminated shifted asymmetric Laplace distributions
Katherine Morris,
Antonio Punzo,
Paul D. McNicholas and
Ryan P. Browne
Computational Statistics & Data Analysis, 2019, vol. 132, issue C, 145-166
Abstract:
Mixtures of multivariate contaminated shifted asymmetric Laplace distributions are developed for handling asymmetric clusters in the presence of outliers (also referred to as bad points herein). In addition to the parameters of the related non-contaminated mixture, for each (asymmetric) cluster, our model has one parameter controlling the proportion of outliers and another specifying the degree of contamination. Crucially, these parameters do not have to be specified a priori, adding a flexibility to our approach that is absent from other approaches such as trimming. Moreover, each observation is given an a posteriori probability of belonging to a particular cluster, and of being an outlier or not; advantageously, this allows for the automatic detection of outliers. An expectation–conditional maximization algorithm is outlined for parameter estimation and various implementation issues are discussed. The behavior of the proposed model is investigated, and compared with well-established finite mixture approaches, on artificial and real data.
Keywords: Outlier detection; Mixture models; Model-based clustering; Shifted asymmetric Laplace distribution (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947318302809
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:132:y:2019:i:c:p:145-166
DOI: 10.1016/j.csda.2018.12.001
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().