EconPapers    
Economics at your fingertips  
 

Order restricted univariate and multivariate inference with adjustment for covariates in partially linear models

Marina Bogomolov and Ori Davidov

Computational Statistics & Data Analysis, 2019, vol. 133, issue C, 20-27

Abstract: In a variety of applications researchers are interested in comparing two or more naturally ordered experimental conditions after adjusting for covariates. Addressing this problem we develop a methodology for estimating a mean response conditional on covariates in the framework of partially linear models which allows the effects of some covariates to be modeled nonparametrically. Our focus is on univariate responses but extensions to multivariate response data are also considered. The new methodology is applied to data from a study that examined the relationship between exposure to PFASs, a class of widely used environmental pollutants, and plasma lipids in a cohort of pregnant women.

Keywords: Analysis of covariance; Order restricted statistical inference; Partially linear model (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947318302020
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:133:y:2019:i:c:p:20-27

DOI: 10.1016/j.csda.2018.08.019

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:133:y:2019:i:c:p:20-27