Bayesian Semiparametric ROC surface estimation under verification bias
Rui Zhu and
Subhashis Ghosal
Computational Statistics & Data Analysis, 2019, vol. 133, issue C, 40-52
Abstract:
The Receiver Operating Characteristic (ROC) surface is a generalization of the ROC curve and is widely used for assessment of the accuracy of diagnostic tests on three categories. Verification bias occurs when not all subjects have their labels observed. This is a common problem in disease diagnosis since the gold standard test to get labels, i.e., the true disease status, can be invasive and expensive. The same situation happens in the evaluation of semi-supervised learning, where the unlabeled data are incorporated. A Bayesian approach for estimating the ROC surface is proposed based on continuous data under a semi-parametric trinormality assumption. The proposed method is then extended to situations in the presence of verification bias. The posterior distribution is computed under the trinormality assumption using a rank-based likelihood. The consistency of the posterior under a mild condition is also established. The proposed method is compared with existing methods for estimating an ROC surface. Simulation results show that it performs well in terms of accuracy. The method is applied to evaluate the performance of CA125 and HE4 in the diagnosis of epithelial ovarian cancer (EOC) as a demonstration.
Keywords: ROC surface; Verification bias correction; Trinormal model; MAR assumption (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947318302317
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:133:y:2019:i:c:p:40-52
DOI: 10.1016/j.csda.2018.09.003
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().