A smooth nonparametric approach to determining cut-points of a continuous scale
Zhiping Qiu,
Limin Peng,
Amita Manatunga and
Ying Guo
Computational Statistics & Data Analysis, 2019, vol. 134, issue C, 186-210
Abstract:
The problem of determining cut-points of a continuous scale according to an established categorical scale is often encountered in practice for the purposes such as making diagnosis or treatment recommendation, determining study eligibility, or facilitating interpretations. A general analytic framework was recently proposed for assessing optimal cut-points defined based on some pre-specified criteria. However, the implementation of the existing nonparametric estimators under this framework and the associated inferences can be computationally intensive when more than a few cut-points need to be determined. To address this important issue, a smoothing-based modification of the current method is proposed and is found to substantially improve the computational speed as well as the asymptotic convergence rate. Moreover, a plug-in type variance estimation procedure is developed to further facilitate the computation. Extensive simulation studies confirm the theoretical results and demonstrate the computational benefits of the proposed method. The practical utility of the new approach is illustrated by an application to a mental health study.
Keywords: Agreement; Association; Cut-point; Nonparametric; Smoothing objective function (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947318302779
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:134:y:2019:i:c:p:186-210
DOI: 10.1016/j.csda.2018.11.001
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().