Alternating direction method of multipliers for nonconvex fused regression problems
Xianchao Xiu,
Wanquan Liu,
Ling Li and
Lingchen Kong
Computational Statistics & Data Analysis, 2019, vol. 136, issue C, 59-71
Abstract:
It is well-known that the fused least absolute shrinkage and selection operator (FLASSO) has been playing an important role in signal and image processing. Recently, the nonconvex penalty is extensively investigated due to its success in sparse learning. In this paper, a novel nonconvex fused regression model, which integrates FLASSO and the nonconvex penalty nicely, is proposed. The developed alternating direction method of multipliers (ADMM) approach is shown to be very efficient owing to the fact that each derived subproblem has a closed-form solution. In addition, the convergence is discussed and proved mathematically. This leads to a fast and convergent algorithm. Extensive numerical experiments show that our proposed nonconvex fused regression outperforms the state-of-the-art approach FLASSO.
Keywords: Fused LASSO; Alternating direction method of multipliers; Variable selection; Nonconvex optimization (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947319300039
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:136:y:2019:i:c:p:59-71
DOI: 10.1016/j.csda.2019.01.002
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().