EconPapers    
Economics at your fingertips  
 

The latent topic block model for the co-clustering of textual interaction data

Laurent Bergé, Charles Bouveyron, Marco Corneli and Pierre Latouche

Computational Statistics & Data Analysis, 2019, vol. 137, issue C, 247-270

Abstract: Textual interaction data involving two disjoint sets of individuals/objects are considered. An example of such data is given by the reviews on web platforms (e.g. Amazon, TripAdvisor, etc.) where buyers comment on products/services they bought. A new generative model, the latent topic block model (LTBM), is developed along with an inference algorithm to simultaneously partition the elements of each set, accounting for the textual information. The estimation of the model parameters is performed via a variational version of the expectation maximization (EM) algorithm. A model selection criterion is formally obtained to estimate the number of partitions. Numerical experiments on simulated data are carried out to highlight the main features of the estimation procedure. Two real-world datasets are finally employed to show the usefulness of the proposed approach.

Keywords: Co-clustering; Latent block model; Text matrices; Topic model; Variational inference (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947319300726
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:137:y:2019:i:c:p:247-270

DOI: 10.1016/j.csda.2019.03.005

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:137:y:2019:i:c:p:247-270