Hierarchical estimation of parameters in Bayesian networks
Laura Azzimonti,
Giorgio Corani and
Marco Zaffalon
Computational Statistics & Data Analysis, 2019, vol. 137, issue C, 67-91
Abstract:
A novel approach for parameter estimation in Bayesian networks is presented. The main idea is to introduce a hyper-prior in the Multinomial–Dirichletmodel, traditionally used for conditional distribution estimation in Bayesian networks. The resulting hierarchical model jointly estimates different conditional distributions belonging to the same conditional probability table, thus borrowing statistical strength from each other. An analytical study of the dependence structure a priori induced by the hierarchical model is performed and an ad hoc variational algorithm for fast and accurate inference is derived. The proposed hierarchical model yields a major performance improvement in classification with Bayesian networks compared to traditional models. The proposed variational algorithm reduces by two orders of magnitude the computational time, with the same accuracy in parameter estimation, compared to traditional MCMC methods. Moreover, motivated by a real case study, the hierarchical model is applied to the estimation of Bayesian networks parameters by borrowing strength from related domains.
Keywords: Hierarchical Bayesian modelling; Bayesian networks; Variational inference; Multi-domain classification (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947319300519
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:137:y:2019:i:c:p:67-91
DOI: 10.1016/j.csda.2019.02.004
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().