EconPapers    
Economics at your fingertips  
 

Constraining kernel estimators in semiparametric copula mixture models

Gildas Mazo and Yaroslav Averyanov

Computational Statistics & Data Analysis, 2019, vol. 138, issue C, 170-189

Abstract: A novel algorithm for performing inference and/or clustering in semiparametric copula-based mixture models is presented. The standard kernel density estimator is replaced by a weighted version that permits to take into account the constraints put on the underlying marginal densities. Lower misclassification error rates and better estimates are obtained on simulations. The pointwise consistency of the weighted kernel density estimator is established under an assumption on the rate of convergence of the sample maximum.

Keywords: Copula; Kernel; Semiparametric; Nonparametric; Mixture model; Clustering (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947319300945
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:138:y:2019:i:c:p:170-189

DOI: 10.1016/j.csda.2019.04.010

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-04-12
Handle: RePEc:eee:csdana:v:138:y:2019:i:c:p:170-189