Estimation and test of jump discontinuities in varying coefficient models with empirical applications
Yan-Yong Zhao and
Jin-Guan Lin
Computational Statistics & Data Analysis, 2019, vol. 139, issue C, 145-163
Abstract:
Varying coefficient models are very important tools to explore the hidden structure between the response and its predictors. This paper focuses on estimating and diagnosing jump discontinuities in coefficient functions. A nonparametric procedure is proposed to estimate jump discontinuities based on the Nadaraya–Watson kernel smoothing and least-squares fitting, and asymptotic properties of resulting estimators are derived. Then, a jump size-based test statistic is developed for checking whether the estimated jump discontinuities are true. A computationally feasible approximation is derived for critical values of its limiting null distribution. Monte Carlo simulations are conducted to assess the finite sample performance of the proposed methodologies, and an empirical example is discussed.
Keywords: Bootstrap; Empirical applications; Jump discontinuities; Varying coefficient models (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947319301148
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:139:y:2019:i:c:p:145-163
DOI: 10.1016/j.csda.2019.05.003
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().