EconPapers    
Economics at your fingertips  
 

Prediction based on conditional distributions of vine copulas

Bo Chang and Harry Joe

Computational Statistics & Data Analysis, 2019, vol. 139, issue C, 45-63

Abstract: Vine copulas are a flexible tool for multivariate non-Gaussian distributions. For data from an observational study where the explanatory variables and response variables are measured together, a proposed vine copula regression method uses regular vines and handles mixed continuous and discrete variables. This method can efficiently compute the conditional distribution of the response variable given the explanatory variables. The performance of the proposed method is evaluated on simulated data sets and a real data set. The experiments demonstrate that the vine copula regression method is superior to linear regression in making inferences with conditional heteroscedasticity.

Keywords: Regression; Nonlinear conditional mean; Conditional quantiles; Heteroscedasticity (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947319301057
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:139:y:2019:i:c:p:45-63

DOI: 10.1016/j.csda.2019.04.015

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:139:y:2019:i:c:p:45-63