EconPapers    
Economics at your fingertips  
 

Automatic identification of curve shapes with applications to ultrasonic vocalization

Zhikun Gao, Yanlin Tang, Huixia Judy Wang, Guangying K. Wu and Jeff Lin

Computational Statistics & Data Analysis, 2020, vol. 148, issue C

Abstract: Like human beings, many animals produce sounds for communication and social interactions. The vocalizations of mice have the characteristics of songs, consisting of syllables of different types determined by the frequency modulations and structure variations. To characterize the impact of social environments and genotypes on vocalizations, it is important to identify the patterns of syllables based on the shapes of frequency contours. Using existing hypothesis testing methods to determine the shape classes would require testing various null and alternative hypotheses for each curve, and is impractical for vocalization studies where the interest is on a large number of frequency contours. A new penalization-based method is proposed, which provides function estimation and automatic shape identification simultaneously. The method estimates the functional curve through quadratic B-spline approximation, and captures the shape feature by penalizing the positive and negative parts of the first two derivatives of the spline function in a group manner. It is shown that under some regularity conditions, the proposed method can identify the correct shape with probability approaching one, and the resulting nonparametric estimator can achieve the optimal convergence rate. Simulation shows that the proposed method gives more stable curve estimation and more accurate curve classification than the unconstrained B-spline estimator, and it is competitive to the shape-constrained estimator assuming prior knowledge of the curve shape. The proposed method is applied to the motivating vocalization study to examine the effect of Methyl-CpG binding protein 2 gene on the vocalizations of mice during courtship.

Keywords: Curve classification; Nonparametric regression; Penalization; Shape identification; Ultrasonic vocalization (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947320300475
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:148:y:2020:i:c:s0167947320300475

DOI: 10.1016/j.csda.2020.106956

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:148:y:2020:i:c:s0167947320300475