An adapted linear discriminant analysis with variable selection for the classification in high-dimension, and an application to medical data
Khuyen T. Le,
Caroline Chaux,
Frédéric J.P. Richard and
Eric Guedj
Computational Statistics & Data Analysis, 2020, vol. 152, issue C
Abstract:
The classification of normally distributed data in a high-dimensional setting when variables are more numerous than observations is considered. Under the assumption that the inverse covariance matrices (the precision matrices) are the same over all groups, the method of the linear discriminant analysis (LDA) is adapted by including a sparse estimate of these matrices. Furthermore, a variable selection procedure is developed based on the graph associated to the estimated precision matrix. For that, a discriminant capacity is defined for each connected component of the graph, and variables of the most discriminant components are kept. The adapted LDA and the variable selection procedure are both evaluated on synthetic data, and applied to real data from PET brain images for the classification of patients with Alzheimer’s disease.
Keywords: Classification; Linear discriminant analysis; Graphical LASSO; Precision matrix estimation; Variable selection; PET imaging; Alzheimer’s disease (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947320301225
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:152:y:2020:i:c:s0167947320301225
DOI: 10.1016/j.csda.2020.107031
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().