Graphical modelling and partial characteristics for multitype and multivariate-marked spatio-temporal point processes
Matthias Eckardt,
Jonatan A. González and
Jorge Mateu
Computational Statistics & Data Analysis, 2021, vol. 156, issue C
Abstract:
A method for dealing with multivariate analysis of marked spatio-temporal point processes is presented by introducing different partial point characteristics, and by extending the spatial dependence graph model formalism. The approach yields a unified framework for different types of spatio-temporal data, including both, purely qualitatively (multivariate) cases and multivariate cases with additional quantitative marks. The proposed graphical model is defined through partial spectral density characteristics; it is highly computationally efficient and reflects the conditional similarity amongst sets of spatio-temporal sub-processes of either points or marked points with identical discrete marks. Two applications, on crime and forestry data, are presented.
Keywords: Fourier transform; Quantitative marks; Spatial dependence graph model (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947320302309
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:156:y:2021:i:c:s0167947320302309
DOI: 10.1016/j.csda.2020.107139
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().