Varying-coefficient hidden Markov models with zero-effect regions
Hefei Liu,
Xinyuan Song and
Baoxue Zhang
Computational Statistics & Data Analysis, 2022, vol. 173, issue C
Abstract:
In psychological, social, behavioral, and medical studies, hidden Markov models (HMMs) have been extensively applied to the simultaneous modeling of longitudinal observations and the underlying dynamic transition process. However, the existing HMMs mainly focus on constant-coefficient HMMs. This study considers a varying-coefficient HMM, which enables simultaneous investigation of the dynamic covariate effects and between-state transitions. Moreover, a soft-thresholding operator is introduced to detect zero-effect regions of the coefficient functions. A full Bayesian approach with a hybird Markov chain Monte Carlo algorithm that combines B-spline approximation and penalization technique is developed for statistical inference. The empirical performance of the propose method is evaluated through simulation studies. An application to a study on the Alzheimer's Disease Neuroimaging Initiative dataset is presented.
Keywords: Bayesian method; Longitudinal data; Spline approximation; Varying-coefficient models; Zero-effect regions (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947322000627
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:173:y:2022:i:c:s0167947322000627
DOI: 10.1016/j.csda.2022.107482
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().