EconPapers    
Economics at your fingertips  
 

Complexity reduction and approximation of multidomain systems of partially ordered data

Alberto Arcagni, Alessandro Avellone and Marco Fattore

Computational Statistics & Data Analysis, 2022, vol. 173, issue C

Abstract: Two greedy algorithms for the synthesis and approximation of multidomain systems of partially ordered data are proposed. Given k input partially ordered sets (posets) on the same elements, the algorithms search for the optimally approximating partial orders, minimizing the dissimilarity between the generated and input posets, based on their matrices of mutual ranking probabilities. A general approximation algorithm is developed, together with a specific procedure for approximation over bucket orders, which are the natural choice when the goal is to “condense” the inputs into rankings, possibly with ties. Different loss functions are also employed, and their outputs are compared. A real example pertaining to regional well-being in Italy motivates the algorithms and shows them in action.

Keywords: Bucket order; Complexity reduction; Multi-indicator system; Multidimensional ordinal data; Partially ordered set; Ranking (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947322001001
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:173:y:2022:i:c:s0167947322001001

DOI: 10.1016/j.csda.2022.107520

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-05-08
Handle: RePEc:eee:csdana:v:173:y:2022:i:c:s0167947322001001