Markov-switching state-space models with applications to neuroimaging
David Degras,
Chee-Ming Ting and
Hernando Ombao
Computational Statistics & Data Analysis, 2022, vol. 174, issue C
Abstract:
State-space models (SSM) with Markov switching offer a powerful framework for detecting multiple regimes in time series, analyzing mutual dependence and dynamics within regimes, and assessing transitions between regimes. These models however present considerable computational challenges due to the exponential number of possible regime sequences to account for. In addition, high dimensionality of time series can hinder likelihood-based inference. To address these challenges, novel statistical methods for Markov-switching SSMs are proposed using maximum likelihood estimation, Expectation-Maximization (EM), and parametric bootstrap. Solutions are developed for initializing the EM algorithm, accelerating convergence, and conducting inference. These methods, which are ideally suited to massive spatio-temporal data such as brain signals, are evaluated in simulations and applications to EEG studies of epilepsy and of motor imagery are presented.
Keywords: State-space model; Switching model; Markov process; EM algorithm; Bootstrap; Neuroimaging (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947322001050
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:174:y:2022:i:c:s0167947322001050
DOI: 10.1016/j.csda.2022.107525
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().