Shape-constrained estimation in functional regression with Bernstein polynomials
Rahul Ghosal,
Sujit Ghosh,
Jacek Urbanek,
Jennifer A. Schrack and
Vadim Zipunnikov
Computational Statistics & Data Analysis, 2023, vol. 178, issue C
Abstract:
Shape restrictions on functional regression coefficients such as non-negativity, monotonicity, convexity or concavity are often available in the form of a prior knowledge or required to maintain a structural consistency in functional regression models. A new estimation method is developed in shape-constrained functional regression models using Bernstein polynomials. Specifically, estimation approaches from nonparametric regression are extended to functional data, properly accounting for shape-constraints in a large class of functional regression models such as scalar-on-function regression (SOFR), function-on-scalar regression (FOSR), and function-on-function regression (FOFR). Theoretical results establish the asymptotic consistency of the constrained estimators under standard regularity conditions. A projection based approach provides point-wise asymptotic confidence intervals for the constrained estimators. A bootstrap test is developed facilitating testing of the shape constraints. Numerical analysis using simulations illustrates improvement in efficiency of the estimators from the use of the proposed method under shape constraints. Two applications include i) modeling a drug effect in a mental health study via shape-restricted FOSR and ii) modeling subject-specific quantile functions of accelerometry-estimated physical activity in the Baltimore Longitudinal Study of Aging (BLSA) as outcomes via shape-restricted quantile-function on scalar regression (QFOSR). R software implementation and illustration of the proposed estimation method and the test is provided.
Keywords: Shape constrained estimation; Functional regression; Monotonicity, convexity; Physical activity (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947322001943
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:178:y:2023:i:c:s0167947322001943
DOI: 10.1016/j.csda.2022.107614
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().