EconPapers    
Economics at your fingertips  
 

Efficient and feasible inference for high-dimensional normal copula regression models

Aristidis K. Nikoloulopoulos

Computational Statistics & Data Analysis, 2023, vol. 179, issue C

Abstract: The composite likelihood (CL) is amongst the computational methods used for the estimation of high-dimensional multivariate normal (MVN) copula models with discrete responses. Its computational advantage, as a surrogate likelihood method, is that is based on the independence likelihood for the univariate marginal regression and non-regression parameters and pairwise likelihood for the correlation parameters. Nevertheless, the efficiency of the CL method for estimating the univariate regression and non-regression marginal parameters can be low. For a high-dimensional discrete response, weighted versions of the composite likelihood estimating equations and an iterative approach to determine good weight matrices are proposed. The general methodology is applied to the MVN copula with univariate ordinal regressions as the marginals. Efficiency calculations show that the proposed method is nearly as efficient as the maximum likelihood for fully specified MVN copula models. Illustrations include simulations and real data applications regarding longitudinal (low-dimensional) and time (high-dimensional) series ordinal response data with covariates. Our studies suggest that there is a substantial gain in efficiency via the weighted CL method.

Keywords: Composite likelihood; Discrete time-series; Estimating equations; Ordered probit/logistic regression; Multivariate probit (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947322002341
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:179:y:2023:i:c:s0167947322002341

DOI: 10.1016/j.csda.2022.107654

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:179:y:2023:i:c:s0167947322002341