Locally weighted minimum contrast estimation for spatio-temporal log-Gaussian Cox processes
Nicoletta D'Angelo,
Giada Adelfio and
Jorge Mateu
Computational Statistics & Data Analysis, 2023, vol. 180, issue C
Abstract:
A local version of spatio-temporal log-Gaussian Cox processes is proposed by using Local Indicators of Spatio-Temporal Association (LISTA) functions plugged into the minimum contrast procedure, to obtain space as well as time-varying parameters. The new procedure resorts to the joint minimum contrast fitting method to estimate the set of second-order parameters. This approach has the advantage of being suitable in both separable and non-separable parametric specifications of the correlation function of the underlying Gaussian Random Field. Simulation studies to assess the performance of the proposed fitting procedure are presented, and an application to seismic spatio-temporal point pattern data is shown.
Keywords: Local models; log-Gaussian Cox processes; Minimum contrast; Second-order characteristics; Spatio-temporal point processes (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947322002596
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:180:y:2023:i:c:s0167947322002596
DOI: 10.1016/j.csda.2022.107679
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().