Fast estimation of multiple group generalized linear latent variable models for categorical observed variables
Björn Andersson,
Shaobo Jin and
Maoxin Zhang
Computational Statistics & Data Analysis, 2023, vol. 182, issue C
Abstract:
A computationally efficient method for marginal maximum likelihood estimation of multiple group generalized linear latent variable models for categorical data is introduced. The approach utilizes second-order Laplace approximations of the integrals in the likelihood function. It is demonstrated how second-order Laplace approximations can be utilized highly efficiently for generalized linear latent variable models by considering symmetries that exist for many types of model structures. In a simulation with binary observed variables and four correlated latent variables in four groups, the method has similar bias and mean squared error compared to adaptive Gauss-Hermite quadrature with five quadrature points while substantially improving computational efficiency. An empirical example from a large-scale educational assessment illustrates the accuracy and computational efficiency of the method when compared against adaptive Gauss-Hermite quadrature with three, five, and 13 quadrature points.
Keywords: Latent variable models; Item response theory; Integral approximation; Gauss-Hermite quadrature; Laplace approximation (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S016794732300021X
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:182:y:2023:i:c:s016794732300021x
DOI: 10.1016/j.csda.2023.107710
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().