EconPapers    
Economics at your fingertips  
 

Bootstrapping the transformed goodness-of-fit test on heavy-tailed GARCH models

Xuqin Wang and Muyi Li

Computational Statistics & Data Analysis, 2023, vol. 184, issue C

Abstract: We study the bootstrap inference on the goodness-of-fit test for generalized autoregressive conditional heteroskedastic (GARCH) models. Note that the commonly-used portmanteau tests for model adequacy checking necessarily impose moment conditions on innovations, we hence construct the test on the sample autocorrelations of a bounded transformation of absolute residuals, which are obtained by the least absolute deviation estimation from a fitted GARCH model. Specifically, we employ the empirical distribution function of absolute residuals as the transformation. Thus the corresponding portmanteau tests are applicable for very heavy-tailed innovations with only finite fractional moments. We bootstrap both the estimation equation and sample autocorrelations of transformed residuals to approximate the test statistics. The asymptotic validity of the bootstrap procedure is established. Monte Carlo experiments compare the finite-sample performance of the proposed bootstrap-based test with other existing tests. An empirical analysis of modeling exchange rates illustrates its usefulness.

Keywords: Random weighting bootstrap; Heavy-tailed GARCH; Moment condition; Residual empirical distribution function (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947323000555
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:184:y:2023:i:c:s0167947323000555

DOI: 10.1016/j.csda.2023.107744

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:184:y:2023:i:c:s0167947323000555