Estimation of projection pursuit regression via alternating linearization
Xin Tan,
Haoran Zhan and
Xu Qin
Computational Statistics & Data Analysis, 2023, vol. 187, issue C
Abstract:
The projection pursuit regression (PPR) has played an important role in statistical modeling. It can be used both as a data model for statistical interpretation and as an algorithmic model for approximating general non-parametric regressions. Existing estimation methods of PPR usually involve complicated minimization in order to achieve desired efficiency under general settings. This paper presents an algorithm by alternatively linearizing the estimation loss function, referred to as aPPR hereafter, which is easy to implement. The asymptotic theory is also established for both the PPR data model and the algorithmic model. Numerical performance of aPPR in model estimation and model interpretation is demonstrated through simulations and real data analysis.
Keywords: High-dimensional data; Linearization; L1 penalty; Nonparametric regression; Rectified linear unit (ReLU) (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947323001044
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:187:y:2023:i:c:s0167947323001044
DOI: 10.1016/j.csda.2023.107793
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().