Regional quantile regression for multiple responses
Seyoung Park,
Hyunjin Kim and
Eun Ryung Lee
Computational Statistics & Data Analysis, 2023, vol. 188, issue C
Abstract:
In this article, we study high-dimensional multiple response quantile regression model for an interval of quantile levels, in which a common set of covariates is used to analyze multiple responses simultaneously. We assume that the underlying quantile coefficient matrix is simultaneously element-wise and row-wise sparse. We address high dimensional issues to identify globally relevant variables for multiple responses when any τth conditional quantile is considered, where τ∈Δ, and Δ is an interval of quantile levels of interest. We develop a novel penalized globally concerned quantile regression with double group Lasso penalties and propose an information criterion for penalty parameter choice. We prove that the proposed method consistently selects both element-wise and row-wise sparsity patterns of the regression coefficient matrix function and that it achieves the oracle convergence rate. Numerical examples and applications to Cancer Cell Line Encyclopedia data illustrate the advantages of the proposed method over separate penalized quantile regression on each response.
Keywords: Multiple response quantile regression; Regional quantiles; Sparse group Lasso; Double penalization; Simultaneous selection; B-spline; Oracle property; Cancer Cell Line Encyclopedia (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947323001378
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:188:y:2023:i:c:s0167947323001378
DOI: 10.1016/j.csda.2023.107826
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().