EconPapers    
Economics at your fingertips  
 

Dynamic risk score modeling for multiple longitudinal risk factors and survival

Cuihong Zhang, Jing Ning, Jianwen Cai, James E. Squires, Steven H. Belle and Ruosha Li

Computational Statistics & Data Analysis, 2024, vol. 189, issue C

Abstract: Modeling disease risk and survival using longitudinal risk factor trajectories is of interest in various clinical scenarios. The capacity to build a prognostic model using the trajectories of multiple longitudinal risk factors, in the presence of potential dependent censoring, would enable more informed, personalized decision making. A dynamic risk score modeling framework is proposed for multiple longitudinal risk factors and survival in the presence of dependent censoring, where both events depend on participants' post-baseline clinical progression and form a competing risks structure. The model requires relatively few random effects regardless of the number of longitudinal risk factors and can therefore accommodate multiple longitudinal risk factors in a parsimonious manner. The proposed method performed satisfactorily in extensive simulation studies. It is further applied to the motivating registry study on pediatric acute liver failure to model death using the trajectories of multiple clinical and biochemical markers. Once established, the model yields an easily calculable longitudinal risk score that can be used for disease monitoring among future patients.

Keywords: Time-dependent covariates; Longitudinal risk score; Dynamic prediction; Competing risks; Joint model; Pediatric acute liver failure (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947323001482
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:189:y:2024:i:c:s0167947323001482

DOI: 10.1016/j.csda.2023.107837

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:189:y:2024:i:c:s0167947323001482