GP-BART: A novel Bayesian additive regression trees approach using Gaussian processes
Mateus Maia,
Keefe Murphy and
Andrew C. Parnell
Computational Statistics & Data Analysis, 2024, vol. 190, issue C
Abstract:
The Bayesian additive regression trees (BART) model is an ensemble method extensively and successfully used in regression tasks due to its consistently strong predictive performance and its ability to quantify uncertainty. BART combines “weak” tree models through a set of shrinkage priors, whereby each tree explains a small portion of the variability in the data. However, the lack of smoothness and the absence of an explicit covariance structure over the observations in standard BART can yield poor performance in cases where such assumptions would be necessary. The Gaussian processes Bayesian additive regression trees (GP-BART) model is an extension of BART which addresses this limitation by assuming Gaussian process (GP) priors for the predictions of each terminal node among all trees. The model's effectiveness is demonstrated through applications to simulated and real-world data, surpassing the performance of traditional modelling approaches in various scenarios.
Keywords: Bayesian additive regression trees; Gaussian process; Probabilistic machine learning; Treed Gaussian process (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S016794732300169X
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:190:y:2024:i:c:s016794732300169x
DOI: 10.1016/j.csda.2023.107858
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().