Bayesian boundary trend filtering
Takahiro Onizuka,
Fumiya Iwashige and
Shintaro Hashimoto
Computational Statistics & Data Analysis, 2024, vol. 191, issue C
Abstract:
Estimating boundary curves has many applications such as economics, climate science, and medicine. Bayesian trend filtering has been developed as one of locally adaptive smoothing methods to estimate the non-stationary trend of data. This paper develops a Bayesian trend filtering for estimating the boundary trend. To this end, the truncated multivariate normal working likelihood and global-local shrinkage priors based on the scale mixtures of normal distribution are introduced. In particular, well-known horseshoe prior for difference leads to locally adaptive shrinkage estimation for boundary trend. However, the full conditional distributions of the Gibbs sampler involve high-dimensional truncated multivariate normal distribution. To overcome the difficulty of sampling, an approximation of truncated multivariate normal distribution is employed. Using the approximation, the proposed models lead to an efficient Gibbs sampling algorithm via the Pólya-Gamma data augmentation. The proposed method is also extended by considering a nearly isotonic constraint. The performance of the proposed method is illustrated through some numerical experiments and real data examples.
Keywords: Boundary trend; Gibbs sampler; Horseshoe prior; Nearly isotonic regression; Trend filtering (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947323002001
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:191:y:2024:i:c:s0167947323002001
DOI: 10.1016/j.csda.2023.107889
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().