Nonparametric augmented probability weighting with sparsity
Xin He,
Xiaojun Mao and
Zhonglei Wang
Computational Statistics & Data Analysis, 2024, vol. 191, issue C
Abstract:
Nonresponse frequently arises in practice, and simply ignoring it may lead to erroneous inference. Besides, the number of collected covariates may increase as the sample size in modern statistics, so parametric imputation or propensity score weighting usually leads to estimation inefficiency and introduces a large variability without consideration of sparsity. In this paper, we propose a nonparametric imputation method with sparsity to estimate the finite population mean, where an efficient kernel-based method in the reproducing kernel Hilbet space is employed for estimation and sparse learning. Moreover, an augmented inverse probability weighting framework is adopted to achieve a central limit theorem for the proposed estimator under regularity conditions. The performance of the proposed method is also supported by several simulated examples and one real-life analysis.
Keywords: Central limit theorem; Reproducing kernel Hilbert space; Nonresponse; Sparse learning (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947323002013
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:191:y:2024:i:c:s0167947323002013
DOI: 10.1016/j.csda.2023.107890
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().