Simultaneous inference and uniform test for eigensystems of functional data
Leheng Cai and
Qirui Hu
Computational Statistics & Data Analysis, 2024, vol. 192, issue C
Abstract:
The asymptotically correct confidence interval (CI) and simultaneous confidence band (SCB) of any individual eigenvalue and eigenfunction are constructed under dense functional data through B-spline smoothing. Besides, uniform inference procedures for eigensystems with a diverging number of components are novelly developed. The proposed estimators for functional eigensystems employ “oracle” efficiency up to order n, which means they are asymptotically indistinguishable from the estimators conducted by completely observed trajectories, and enjoy computational efficiency with much more convenient spectrum decomposition forms. Furthermore, an extension to two-sample problems is also investigated. Numerical simulation results strongly corroborate the asymptotic theory. Real data analysis for ElectroEncephalogram (EEG) data illustrates applicability of the developed methods.
Keywords: Functional principal component analysis; Functional data; Nonparametric smoothing; B-spline; Simultaneous inference (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947323002116
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:192:y:2024:i:c:s0167947323002116
DOI: 10.1016/j.csda.2023.107900
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().