EconPapers    
Economics at your fingertips  
 

Rank-based sequential feature selection for high-dimensional accelerated failure time models with main and interaction effects

Ke Yu and Shan Luo

Computational Statistics & Data Analysis, 2024, vol. 197, issue C

Abstract: High-dimensional accelerated failure time (AFT) models are commonly used regression models in survival analysis. Feature selection problem in high-dimensional AFT models is addressed, considering scenarios involving solely main effects or encompassing both main and interaction effects. A rank-based sequential feature selection (RankSFS) method is proposed, the selection consistency is established and illustrated by comparing it with existing methods through extensive numerical simulations. The results show that RankSFS achieves a higher Positive Discovery Rate (PDR) and lower False Discovery Rate (FDR). Additionally, RankSFS is applied to analyze the data on Breast Cancer Relapse. With a remarkable short computational time, RankSFS successfully identifies two crucial genes.

Keywords: Accelerated failure time models; Feature selection; Interaction effects; Rank-based; Sequential (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947324000628
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:197:y:2024:i:c:s0167947324000628

DOI: 10.1016/j.csda.2024.107978

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:197:y:2024:i:c:s0167947324000628