Medoid splits for efficient random forests in metric spaces
Matthieu Bulté and
Helle Sørensen
Computational Statistics & Data Analysis, 2024, vol. 198, issue C
Abstract:
An adaptation of the random forest algorithm for Fréchet regression is revisited, addressing the challenge of regression with random objects in metric spaces. To overcome the limitations of previous approaches, a new splitting rule is introduced, substituting the computationally expensive Fréchet means with a medoid-based approach. The asymptotic equivalence of this method to Fréchet mean-based procedures is demonstrated, along with the consistency of the associated regression estimator. This approach provides a sound theoretical framework and a more efficient computational solution to Fréchet regression, broadening its application to non-standard data types and complex use cases.
Keywords: Least squares regression; Medoid; Metric spaces; Random forest; Random objects (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947324000793
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:198:y:2024:i:c:s0167947324000793
DOI: 10.1016/j.csda.2024.107995
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().