A double Pólya-Gamma data augmentation scheme for a hierarchical Negative Binomial - Binomial data model
Xuan Ma,
Jenný Brynjarsdóttir and
Thomas LaFramboise
Computational Statistics & Data Analysis, 2024, vol. 199, issue C
Abstract:
A double Pólya-Gamma data augmentation scheme is developed for posterior sampling from a Bayesian hierarchical model of total and categorical count data. The scheme applies to a Negative Binomial - Binomial (NBB) hierarchical regression model with logit links and normal priors on regression coefficients. The approach is shown to be very efficient and in most cases out-performs the Stan program. The hierarchical modeling framework and the Pólya-Gamma data augmentation scheme are applied to human mitochondrial DNA data.
Keywords: Data augmentation; Bayesian hierarchical model; Pólya-Gamma; Mitochondrial DNA data (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947324000938
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:199:y:2024:i:c:s0167947324000938
DOI: 10.1016/j.csda.2024.108009
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().