Bayesian modal regression based on mixture distributions
Qingyang Liu,
Xianzheng Huang and
Ray Bai
Computational Statistics & Data Analysis, 2024, vol. 199, issue C
Abstract:
Compared to mean regression and quantile regression, the literature on modal regression is very sparse. A unifying framework for Bayesian modal regression is proposed, based on a family of unimodal distributions indexed by the mode, along with other parameters that allow for flexible shapes and tail behaviors. Sufficient conditions for posterior propriety under an improper prior on the mode parameter are derived. Following prior elicitation, regression analysis of simulated data and datasets from several real-life applications are conducted. Besides drawing inference for covariate effects that are easy to interpret, prediction and model selection under the proposed Bayesian modal regression framework are also considered. Evidence from these analyses suggest that the proposed inference procedures are very robust to outliers, enabling one to discover interesting covariate effects missed by mean or median regression, and to construct much tighter prediction intervals than those from mean or median regression. Computer programs for implementing the proposed Bayesian modal regression are available at https://github.com/rh8liuqy/Bayesian_modal_regression.
Keywords: Mode; Fat-tailed distribution; Outlier; Unimodal distribution; Robust statistics (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947324000963
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:199:y:2024:i:c:s0167947324000963
DOI: 10.1016/j.csda.2024.108012
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().