Tests for high-dimensional generalized linear models under general covariance structure
Weichao Yang,
Xu Guo and
Lixing Zhu
Computational Statistics & Data Analysis, 2024, vol. 199, issue C
Abstract:
This study investigates the testing of regression coefficients within high-dimensional generalized linear models featuring general covariance structures. The derived asymptotic properties reveal that distinct covariance structures can lead to varying limiting null distributions, including the normal distribution, for a widely employed quadratic-norm based test statistic. This circumstance renders it infeasible to determine critical values through a limiting null distribution. In response to this challenge, we propose a multiplier bootstrap test procedure for practical implementation. Additionally, we introduce a modified version of this procedure, incorporating projection when dealing with nuisance parameters. We then proceed to examine the asymptotic level and power of the proposed tests and assess their finite-sample performance through simulations. Finally, we present a real data analysis to illustrate the practical application of the proposed tests.
Keywords: High-dimensional inference; U-statistics; Multiplier bootstrap; Nuisance parameter (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947324001105
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:199:y:2024:i:c:s0167947324001105
DOI: 10.1016/j.csda.2024.108026
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().