EconPapers    
Economics at your fingertips  
 

Community influence analysis in social networks

Yuanxing Chen, Kuangnan Fang, Wei Lan, Chih-Ling Tsai and Qingzhao Zhang

Computational Statistics & Data Analysis, 2025, vol. 202, issue C

Abstract: Heterogeneous influence detection across network nodes is an important task in network analysis. A community influence model (CIM) is proposed to allow nodes to be classified into different communities (i.e., clusters or groups) such that the nodes within the same community share the common influence parameter. Employing the quasi-maximum likelihood approach, together with the fused lasso-type penalty, both the number of communities and the influence parameters can be estimated without imposing any specific distribution assumption on the error terms. The resulting estimators are shown to enjoy the oracle property; namely, they perform as well as if the true underlying network structure were known in advance. The proposed approach is also applicable for identifying influential nodes in a homogeneous setting. The performance of our method is illustrated via simulation studies and two empirical examples using stock data and coauthor citation data, respectively.

Keywords: Fused lasso; Influence power; Nodal heterogeneity; Quasi-maximum likelihood estimator; Subgroup analysis (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S016794732400121X
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:202:y:2025:i:c:s016794732400121x

DOI: 10.1016/j.csda.2024.108037

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:202:y:2025:i:c:s016794732400121x