Robust direction estimation in single-index models via cumulative divergence
Shuaida He,
Jiarui Zhang and
Xin Chen
Computational Statistics & Data Analysis, 2025, vol. 202, issue C
Abstract:
In this paper, we address direction estimation in single-index models, with a focus on heavy-tailed data applications. Our method utilizes cumulative divergence to directly capture the conditional mean dependence between the response variable and the index predictor, resulting in a model-free property that obviates the need for initial link function estimation. Furthermore, our approach allows heavy-tailed predictors and is robust against the presence of outliers, leveraging the rank-based nature of cumulative divergence. We establish theoretical properties for our proposal under mild regularity conditions and illustrate its solid performance through comprehensive simulations and real data analysis.
Keywords: Cumulative divergence; Heavy-tailed data; Index direction; Single index model; Sufficient dimension reduction (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947324001361
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:202:y:2025:i:c:s0167947324001361
DOI: 10.1016/j.csda.2024.108052
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().