A note on adaptive group lasso
Hansheng Wang () and
Chenlei Leng
Computational Statistics & Data Analysis, 2008, vol. 52, issue 12, 5277-5286
Abstract:
Group lasso is a natural extension of lasso and selects variables in a grouped manner. However, group lasso suffers from estimation inefficiency and selection inconsistency. To remedy these problems, we propose the adaptive group lasso method. We show theoretically that the new method is able to identify the true model consistently, and the resulting estimator can be as efficient as oracle. Numerical studies confirmed our theoretical findings.
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (60)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(08)00258-2
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:52:y:2008:i:12:p:5277-5286
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().