EconPapers    
Economics at your fingertips  
 

Choosing an appropriate number of factors in factor analysis with incomplete data

Juwon Song and Thomas R. Belin

Computational Statistics & Data Analysis, 2008, vol. 52, issue 7, 3560-3569

Abstract: When we conduct factor analysis, the number of factors is often unknown in advance. Among many decision rules for an appropriate number of factors, it is easy to find approaches that make use of the estimated covariance matrix. When data include missing values, the estimated covariance matrix using either complete cases or available cases may not accurately represent the true covariance matrix, and decision based on the estimated covariance matrix may be misleading. We discuss how to apply model selection techniques using AIC or BIC to choose an appropriate number of factors when data include missing values. In the simulation study, it is shown that the suggested methods select the correct number of factors for simulated data with known number of factors.

Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(07)00445-8
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:52:y:2008:i:7:p:3560-3569

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:52:y:2008:i:7:p:3560-3569