Exploiting predictor domain information in sufficient dimension reduction
Lexin Li
Computational Statistics & Data Analysis, 2009, vol. 53, issue 7, 2665-2672
Abstract:
Analysis of high-dimensional data is becoming the norm in a variety of scientific studies and dimension reduction methods are widely employed. As the predictor domain knowledge is often available, it is useful to incorporate such domain information into dimension reduction and subsequent model formulation. Existing solutions such as simple average, principal components analysis and partial least squares cannot assure preservation of full regression information when reducing the dimension. In this article we investigate sufficient dimension reduction strategies that can retain full regression information meanwhile utilizing prior domain knowledge. Both simulations and a real data analysis demonstrate that the new methods are effective and often superior than the existing solutions.
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(09)00006-1
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:53:y:2009:i:7:p:2665-2672
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().