EconPapers    
Economics at your fingertips  
 

Detecting influential observations in Kernel PCA

Michiel Debruyne, Mia Hubert and Johan Van Horebeek

Computational Statistics & Data Analysis, 2010, vol. 54, issue 12, 3007-3019

Abstract: Kernel Principal Component Analysis extends linear PCA from a Euclidean space to any reproducing kernel Hilbert space. Robustness issues for Kernel PCA are studied. The sensitivity of Kernel PCA to individual observations is characterized by calculating the influence function. A robust Kernel PCA method is proposed by incorporating kernels in the Spherical PCA algorithm. Using the scores from Spherical Kernel PCA, a graphical diagnostic is proposed to detect points that are influential for ordinary Kernel PCA.

Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(09)00312-0
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:54:y:2010:i:12:p:3007-3019

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:54:y:2010:i:12:p:3007-3019