Analysis of zero-inflated clustered count data: A marginalized model approach
Keunbaik Lee,
Yongsung Joo,
Joon Jin Song and
Dee Wood Harper
Computational Statistics & Data Analysis, 2011, vol. 55, issue 1, 824-837
Abstract:
Min and Agresti (2005) proposed random effect hurdle models for zero-inflated clustered count data with two-part random effects for a binary component and a truncated count component. In this paper, we propose new marginalized models for zero-inflated clustered count data using random effects. The marginalized models are similar to Dobbie and Welsh's (2001) model in which generalized estimating equations were exploited to find estimates. However, our proposed models are based on a likelihood-based approach. A Quasi-Newton algorithm is developed for estimation. We use these methods to carefully analyze two real datasets.
Keywords: Hurdle; models; ZIP; models; Random; effects; Quasi-Newton (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(10)00278-1
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:55:y:2011:i:1:p:824-837
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().