Estimation of inverse mean: An orthogonal series approach
Qin Wang and
Xiangrong Yin
Computational Statistics & Data Analysis, 2011, vol. 55, issue 4, 1656-1664
Abstract:
In this article, we propose the use of orthogonal series to estimate the inverse mean space. Compared to the original slicing scheme, it significantly improves the estimation accuracy without losing computation efficiency, especially for the heteroscedastic models. Compared to the local smoothing approach, it is more computationally efficient. The new approach also has the advantage of robustness in selecting the tuning parameter. Permutation test is used to determine the structural dimension. Moreover, a variable selection procedure is incorporated into this new approach, which is particularly useful when the model is sparse. The efficacy of the proposed method is demonstrated through simulations and a real data analysis.
Keywords: Sufficient; dimension; reduction; Central; subspace; Sliced; inverse; regression; Orthogonal; series (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(10)00410-X
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:55:y:2011:i:4:p:1656-1664
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().