Modelling over and undercounts for design-based Monte Carlo studies in small area estimation: An application to the German register-assisted census
Jan Pablo Burgard and
Ralf T. Münnich
Computational Statistics & Data Analysis, 2012, vol. 56, issue 10, 2856-2863
Abstract:
In a register-assisted census, the main information about the population is obtained from population registers. Additionally, a sample is drawn to allow for the estimation of population counts for variables that are not included in the registers. Typically, registers suffer from over and undercounts. The over and undercounts are not observable from the register itself. In order to evaluate relevant estimation strategies to deal with over and undercounts, a reliable data set is to be used within a comprehensive Monte Carlo simulation study. This allows for comparing different estimators in a close-to-reality framework. The reliability of the data set is crucial and thus also the correct implementation of over and undercount structures. The impact of different over and undercounts modelling strategies on the prediction of the total population in considerably small regions within a register-assisted census framework is shown.
Keywords: Small area estimation; Synthetic register errors; Random effects; Monte Carlo studies (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947310004305
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:56:y:2012:i:10:p:2856-2863
DOI: 10.1016/j.csda.2010.11.002
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().