EconPapers    
Economics at your fingertips  
 

A particle swarm algorithm with broad applicability in shape-constrained estimation

Mark A. Wolters

Computational Statistics & Data Analysis, 2012, vol. 56, issue 10, 2965-2975

Abstract: In nonparametric function estimation, the inclusion of shape constraints can confer several advantages, including improved estimation accuracy, reduced sensitivity to smoothing parameters, and control over the qualitative appearance of the estimate. Finding shape-restricted estimates may require solving a difficult optimization problem, however, making these advantages hard to realize. A particle swarm algorithm is proposed to overcome this barrier and expand the possibilities for shape-constrained estimation. The algorithm uses a cooperative search strategy with two swarms, one focused on global exploration and one focused on local exploitation. The new heuristic has the added advantage of being a general tool, applicable without modification to a variety of estimators, constraints, and objective functions. The algorithm is demonstrated on a number of density estimation and regression problems, and the potential for further improvement is discussed. Supplementary materials, including source code, are available online.

Keywords: Heuristic optimization; Nonparametric estimation; Density estimation; Regression; Kernel methods (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947311004063
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:56:y:2012:i:10:p:2965-2975

DOI: 10.1016/j.csda.2011.11.009

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:56:y:2012:i:10:p:2965-2975