Group coordinate descent algorithms for nonconvex penalized regression
Fengrong Wei and
Hongxiao Zhu
Computational Statistics & Data Analysis, 2012, vol. 56, issue 2, 316-326
Abstract:
We consider the problem of selecting grouped variables in linear regression and generalized linear regression models, based on penalized likelihood. A number of penalty functions have been used for this purpose, including the smoothly clipped absolute deviation (SCAD) penalty and the minimax concave penalty (MCP). These penalty functions, in comparison to the popularly used Lasso, have attractive theoretical properties such as unbiasedness and selection consistency. Although the model fitting methods using these penalties are well developed for individual variable selection, the extension to grouped variable selection is not straightforward, and the fitting can be unstable due to the nonconvexity of the penalty functions. To this end, we propose the group coordinate descent (GCD) algorithms, which extend the regular coordinate descent algorithms. These GCD algorithms are efficient, in that the computation burden only increases linearly with the number of the covariate groups. We also show that using the GCD algorithm, the estimated parameters converge to a global minimum when the sample size is larger than the dimension of the covariates, and converge to a local minimum otherwise. In addition, we demonstrate the regions of the parameter space in which the objective function is locally convex, even though the penalty is nonconvex. In addition to group selection in the linear model, the GCD algorithms can also be extended to generalized linear regression. We present details of the extension using an example of logistic regression. The efficiency of the proposed algorithms are presented through simulation studies and a real data example, in which the MCP based and SCAD based GCD algorithms provide improved group selection results as compared to the group Lasso.
Keywords: Group coordinate decent algorithm; Grouping structure; High dimension; Minimax concave penalty; Smoothly clipped absolute deviation penalty (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947311003069
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:56:y:2012:i:2:p:316-326
DOI: 10.1016/j.csda.2011.08.007
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().