Multivariate probit analysis of binary familial data using stochastic representations
Yihao Deng,
Roy T. Sabo and
N. Rao Chaganty
Computational Statistics & Data Analysis, 2012, vol. 56, issue 3, 656-663
Abstract:
The probit function is an alternative transformation to the logistic function in the analysis of binary data. However, use of the probit function is prohibitively complicated for cases of multivariate or repeated-measure binary responses, as integrations involving the multivariate normal distribution can be difficult to compute. In this paper, we propose an alternative form to stochastically represent random variables in the case of familial binary data that simplifies calculation of the multivariate normal integrals involved in the probit link. We provide examples of these stochastic representations for one- and two-parent families, and compare the performance of this methodology with that of moment estimators by calculating asymptotic relative efficiencies and through a real-life data example. Particular attention is paid to analyzing the properties of regression parameter estimates from these two methods with respect to the feasible ranges of the correlation parameters.
Keywords: Multivariate probit; Stochastic representation; Familial binary data; Fisher information (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947311003331
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:56:y:2012:i:3:p:656-663
DOI: 10.1016/j.csda.2011.09.014
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().