Geoadditive expectile regression
Fabian Sobotka and
Thomas Kneib
Computational Statistics & Data Analysis, 2012, vol. 56, issue 4, 755-767
Abstract:
Quantile regression has emerged as one of the standard tools for regression analysis that enables a proper assessment of the complete conditional distribution of responses even in the presence of heteroscedastic errors. Quantile regression estimates are obtained by minimising an asymmetrically weighted sum of absolute deviations from the regression line, a decision theoretic formulation of the estimation problem that avoids a full specification of the error term distribution. Recent advances in mean regression have concentrated on making the regression structure more flexible by including nonlinear effects of continuous covariates, random effects or spatial effects. These extensions often rely on penalised least squares or penalised likelihood estimation with quadratic penalties and may therefore be difficult to combine with the linear programming approaches often considered in quantile regression. As a consequence, geoadditive expectile regression based on minimising an asymmetrically weighted sum of squared residuals is introduced. Different estimation procedures are presented including least asymmetrically weighted squares, boosting and restricted expectile regression. The properties of these procedures are investigated in a simulation study and an analysis on rental fees in Munich is provided where the geoadditive specification allows for an analysis of nonlinear effects of the size of flats or the year of construction and the spatial distribution of rents simultaneously.
Keywords: Boosting; Expectiles; Least asymmetric weighted squares; Markov random fields; Quantiles; P-splines; Tensor product splines (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (26)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947310004433
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:56:y:2012:i:4:p:755-767
DOI: 10.1016/j.csda.2010.11.015
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().