Model selection in binary and tobit quantile regression using the Gibbs sampler
Yonggang Ji,
Nan Lin and
Baoxue Zhang
Computational Statistics & Data Analysis, 2012, vol. 56, issue 4, 827-839
Abstract:
A stochastic search variable selection approach is proposed for Bayesian model selection in binary and tobit quantile regression. A simple and efficient Gibbs sampling algorithm was developed for posterior inference using a location-scale mixture representation of the asymmetric Laplace distribution. The proposed approach is then illustrated via five simulated examples and two real data sets. Results show that the proposed method performs very well under a variety of scenarios, such as the presence of a moderately large number of covariates, collinearity and heterogeneity.
Keywords: Binary quantile regression; Asymmetric Laplace distribution; Bayesian model selection; Gibbs sampling; Tobit quantile regression (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947311003604
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:56:y:2012:i:4:p:827-839
DOI: 10.1016/j.csda.2011.10.003
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().